Abstract

This paper is devoted to the study of the asymptotic dynamics of the stochastic damped sine-Gordon equation with homogeneous Neumann boundary condition. It is shown that for any positive damping and diffusion coefficients, the equation possesses a random attractor, and when the damping and diffusion coefficients are sufficiently large, the random attractor is a one-dimensional random horizontal curve regardless of the strength of noise. Hence its dynamics is not chaotic. It is also shown that the equation has a rotation number provided that the damping and diffusion coefficients are sufficiently large, which implies that the solutions tend to oscillate with the same frequency eventually and the so-called frequency locking is successful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.