The traditional delay-and-sum imaging algorithm usually requires sending an excitation pulse at each piezoceramic transducer and obtains a damage image by drawing only ellipses. A multi-delay-and-sum imaging algorithm is proposed for damage detection of thin-plate-like structures using sparse piezoceramic transducers. Compared with the traditional delay-and-sum imaging algorithm, the proposed algorithm sends only one excitation pulse for each detection. A reflection coefficient is employed in the proposed method to cancel the artifacts caused by the boundary reflection signals, and the reflection coefficient is determined by the distribution of piezoceramic transducers and strength of the reflection signals. An additional time compensation due to the excitation pulse is also made to reduce the error of damage locating. To increase the image pixel value of a damage, the damage image is obtained by drawing both ellipses and hyperbolas with transmitter–sensor pair signals. The experimental results obtained on an aluminum alloy plate demonstrate that the proposed multi-delay-and-sum imaging algorithm can identify a bonded mass damage efficiently and accurately.
Read full abstract