The increasing temperature and variability in precipitation, in terms of both frequency and intensity, are affecting different sectors in the Himalayan region. This study aims to quantify the future scenario and related extremes in the Kabul River Basin (KRB) of the western Himalaya using high-resolution climate datasets. We selected four representative General Circulation Model (GCM) runs from Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios, based on future projections, climatic extremes and their abilities to represent the historical climate cycle (1981–2010) of KRB. The seasonal analysis of precipitation shows decreasing pattern during the winter and pre-monsoon seasons and annual mean temperature will increase consistently by 3 to 5 °C in RCP4.5 and 8.5 scenarios. Ten indices were selected to study climatic extremes pertaining to the health, agriculture and water resources sectors. The extremes, like consecutive summer days, warm days and heatwaves, will increase, whereas the frost days, cold nights, cold waves and extreme precipitation days will decrease towards the end of this century. Besides, the extremes are not homogenous in time and space. Based on the results of this study, there is a need for prompt climate actions in order to increase the adaptive capacity against these extreme changes and to build resilient livelihoods in the KRB.