The Brazilian Midwest has significant spatiotemporal variability in terms of precipitation and air temperature, making it more vulnerable to the occurrence of extreme weather events. The objective of this study is to characterize the trend of extreme climatic events regarding precipitation and air temperature in the Brazilian Midwest, and to analyze their relationship with Pacific and Atlantic Sea Surface Temperature anomalies (SSTAs). We used daily precipitation and air temperature data measured at 24 conventional weather stations. Pacific and Atlantic SSTA data were obtained from the Climate Prediction Center. The frequency of hot extremes had increased, while that of cold extremes had decreased significantly, thus highlighting the consistent warming across the Brazilian Midwest. The precipitation extremes had greater variability than the temperature extremes. Precipitation intensity increased in Amazonia, with no change in annual precipitation volume. The precipitation extremes in the Brazilian Savanna, Pantanal, and the Atlantic Forest did not have a well-defined pattern but indicated a trend towards a decrease in days with intense precipitation events. In general, the Equatorial Pacific and Atlantic Ocean (TNAI and TSAI) SSTAs were negatively correlated with precipitation extreme indices and positively correlated with air temperature extreme indices in the Amazon. However, the North Atlantic SSTAs were positively correlated with precipitation and air temperature extreme indices in the Brazilian Savanna and Pantanal. In addition, the Pacific SSTAs were positively correlated with precipitation intensity in the Atlantic Forest. Thus, the variability of the trends of precipitation and air temperature extreme indices in the Brazilian Midwest was observed, and it was surmised that this measure was significantly related to Pacific and Atlantic SSTAs.
Read full abstract