Data-driven modeling has been considered as an attractive approach for fault detection in chemical processes. Of special interest to industry are methods that represent nonlinear phenomena and detect complex faults. In this paper, a semi-supervised deep learning method - deep autoencoder for fault detection in Tennessee Eastman Process (TEP) is proposed. The TEP process is a simulated benchmark for evaluating process control and monitoring methods. The performance of the proposed method is evaluated and compared to Principal Component Analysis (PCA). The experimental results demonstrate that the proposed optimized five-layers DAE model for fault detection outperforms the standard PCA. Of special importance to real-world applications is its capability for automatic variable selection. In comparison to PCA it demonstrated higher prediction accuracy for most of the generated faults. Deep autoencoder has the potential to become an excellent approach for process monitoring and fault detection in chemical processes.