For endohedral metallofullerenes (EMFs), it has been well established that the cage shape and size should match those of the endohedral cluster. As a result, sufficient cluster-cage interaction can be achieved, which is essential for mutual stabilization. Nevertheless, how a small endohedral cluster nests in a giant fullerene has been less explored. Herein, we report a pair of large oxide-cluster fullerene (OCF) isomers, denoted as Ho2O@C92-I and -II. Crystallographic studies reveal that major isomer-I possesses a D3(85)-C92 cage with a highly stretched Ho2O cluster inside, which contributes to achieving regular metal-cage contacts. Density functional theory (DFT) computations also reveal the predominant abundance of the D3(85) isomer relative to the other two possible minor species including C1(67) and C2(64) isomers. Moreover, electrochemical (EC) studies verify that the isomers exhibit almost identical redox behaviors, indicating their similar cage structures. On the basis of the remarkable topological similarity of D3(85) and C1(67) isomers, isomer-II is likely to be Ho2O@C1(67)-C92, though it remains to be confirmed. Our studies thus provide new insights into the cage-cluster interplay and cage isomerization, both contributing to a better understanding of large EMFs.
Read full abstract