Abstract

The complete set of 271 classical fullerene isomers of C50 has been studied by full geometry optimizations at the SAM1, PM3, AM1, and MNDO quantum-chemical levels, and their lower energy structures have also been partially computed at the ab initio levels of theory. A D(5h) species, with the least number of pentagon adjacency, is predicted by all semiempirical methods and the HF/4-31G calculations as the lowest energy structure, but the B3LYP/6-31G* geometry optimizations favor a D3 structure (with the largest HOMO-LUMO gap and the second least number of adjacent pentagons) energetically lower (-2 kcal/mol) than the D(5h) isomer. To clarify the relative stabilities at elevated temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the HF/4-31G level for the first time. The computed relative-stability interchanges show that the D3 isomer behaves more thermodynamically stable than the D(5h) species within a wide temperature interval related to fullerene formation. According to a newly reported experimental observation, the structural/energetic properties and relative stabilities of both critical isomers (D(5h) and D3) are analyzed along with the experimentally identified decachlorofullerene C50Cl10 of D(5h) symmetry. Some features of higher symmetry C50 nanotube-type isomers are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call