Coalbed gases from 11 wells producing from the Springfield and Seelyville Coal Members (Pennsylvanian) were analyzed for composition and carbon and hydrogen stable isotope ratios in four sampling events to investigate short-term variation trends. Nine wells in the Seelyville Coal Member produce coalbed gases from the virgin seam, whereas two wells in the Springfield Coal Member produce gas from mine voids. Methane dominates gas composition in all wells, and its content ranges from ~94% to almost 98%, with ethane typically accounting for less than 0.01%. Carbon dioxide content in most samples is below 1%, whereas N2 content ranges from less than 2% to 4.8%. Methane δ13C values range from −55.3‰ to −61.1‰, and δ2H values range from −201‰ to −219‰. Isotopic values of methane and C1/(C2 + C3) ratios indicate a biogenic origin along the CO2-reduction pathway, consistent with previous studies in this area. Our results demonstrate that gas properties may change significantly during a period of one year of production history. Compositional trends (e.g., C1/(C2 + C3), CH4/CO2 ratios) are specific for each well and often irregular. These changes result from a combined influence of numerous factors and, therefore, are difficult to predict.
Read full abstract