Vascular calcification (VC) is a common pathological manifestation of atherosclerosis, hypertension, diabetes vascular disease, vascular injury, chronic kidney disease and aging, which is mainly manifested as increased stiffness of the vascular wall. Oxidative stress and autophagy dysfunction are key factors in the pathogenesis of vascular calcification, but the specific mechanisms and the therapeutic strategy of vascular calcification have not been clarified. In the present study, Sirtuin 1 (SIRT1) was screened as the therapeutic targets for vascular calcification by the bioinformatics. SIRT1 is a nicotinamide adenine dinucleotide, which plays an important role in inhibiting oxidative stress and promoting autophagy. Luteolin(LUT), a kind of natural tetrahydroxyl flavonoid, exists in many plants and has many pharmacological effects such as anti-oxidation and anti-apoptosis. We have reported that luteolin has certain anti-osteoporosis effects in the previous study, and it is accepted that the development of vascular calcification is similar to bone formation, indicating that luteolin may also resist vascular calcification. And luteolin is known to activate SIRT1 to some extent. Moreover, the molecular docking analysis predicted that SIRT1 could bind directly to luteolin. Therefore, the purpose of this study was to investigate the potential role of luteolin in inhibiting oxidative stress and promoting autophagy during vascular calcification via modulating SIRT1 expression. The results showed that luteolin significantly improved vascular calcification induced by a high-fat diet (HFD) and vitamin D3 in rats in vivo. In addition, luteolin significantly repressed the formation of mineralized nodules and ALP activity in H2O2-treated A7r5 cells. Luteolin reduced the level of MDA, LDH and ROS generation, inhibited the protein expression of cleaved caspase-3, cleaved caspase-9, β-catenin and BMP-2 in the aortic tissue of the rat and rat smooth muscle cells (A7r5) treated with hydrogen peroxide. At the same time, luteolin could promote the expression of autophagy related proteins. Moreover, luteolin also produced effects to increase the protein expression levels of SIRT1 more than 2 times both in vivo and in vitro. In terms of mechanism, luteolin attenuated vascular calcification by inhibiting oxidative stress and improving autophagy level, via modulating SIRT1 / CXCR4 signaling pathway. In conclusion, this experiment for the first time revealed that LUT protected against VC via modulating SIRT1 / CXCR4 signaling pathway to promote autophagy and inhibit vascular calcification and may be developed as a new therapeutic agent for vascular calcification and atherosclerosis.