Effective scaffolding of immunogens is crucial for generating conformationally selective antibodies through active immunization, particularly in the treatment of protein misfolding diseases such as Alzheimer's and Parkinson's disease. Previous computational work has revealed that a disorder-prone region of the tau protein, when in a stacked form, is predicted to structurally resemble a small, soluble protofibril, having conformational properties similar to those of experimental in vitro tau oligomers. Such an oligomeric structural mimic has the potential to serve as a vaccine immunogen design for Alzheimer's disease. In this study, we developed a cyclization scaffolding method in Rosetta, in which multiple cyclic peptides are stacked into a protofibril. Cyclization results in significant stabilization of protofibril-like structures by constraining the conformational space. Applying this method to the disorder-prone region of the tau fibril, we evaluated the metastability of the cyclized tau immunogen using molecular dynamics simulations, and we identified sequences of two cyclic constructs having high metastability in the protofibril. We then assessed their thermodynamic stability by computing the free energy required to separate a distal chain from the rest of the stacked structure. Our computational results, based on molecular dynamics simulations and free energy calculations, demonstrate that two cyclized constructs, cyclo-(VKSEKLDFKDRVQSKIFyN) and cyclo-(VKSEKLDFKDRVQSKIYvG) (lowercase letters indicate d-form amino acids), possess significantly increased thermodynamic stability in the protofibril over an uncyclized linear construct VKSEKLDFKDRVQSKI. The cyclization scaffolding approach proposed here holds promise as a means to effectively design immunogens for protein misfolding diseases, particularly those involving liposome-conjugated peptide constructs.
Read full abstract