The catalase activity of cultured rat hepatocytes was inhibited by 90% pretreatment with 20 mM aminotriazole without effect on the activities of glutathione peroxidase or glutathione reductase, or on the viability of the cells over the subsequent 24 h. Glutathione reductase was inhibited by 85% by pretreatment with 300 microM 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) without effect on glutathione peroxidase, catalase, or on viability. Both pretreatments sensitized the hepatocytes to the cytotoxicity of H2O2 generated either by glucose oxidase (0.05-0.5 units/ml) or by the autoxidation of the one-electron-reduced state of menadione (50-250 microM). Aminotriazole pretreatment had no effect on the GSH content of the hepatocytes. BCNU reduced GSH levels by 50%. Depletion of GSH levels to less than 20% of control by treatment with diethyl maleate, however, did not sensitize the cells to either glucose oxidase or menadione, indicating that the effect of BCNU is related to inhibition of the GSH-GSSG redox cycle rather than to the depletion of GSH. With glucose oxidase, most of the cell killing in hepatocytes pretreated with either aminotriazole or BCNU occurred between 1 and 3 h. The antioxidant diphenylphenylenediamine (DPPD) had no effect on viability at 3 h. Catalase added to the culture medium 1 h after the addition of glucose oxidase prevented the cell killing measured at 3 h. The sulfhydryl reagents dithiothreitol (200 microM), N-acetyl-L-cysteine (4 mM), and alpha-mercaptopropionyl-L-glycine (2.5 mM) prevented the cell killing with exogenous H2O2 in hepatocytes sensitized by the inhibition of catalase or glutathione reductase. With menadione, there was no killing of nonpretreated hepatocytes at 1 h, and DPPD did not prevent the cell death after 3 h. Aminotriazole pretreatment enhanced the cell killing at 3 h but not at 1 h, and DPPD was not protective. Catalase added to the medium at 1 h inhibited the cell death measured at 3 h. In contrast, menadione killed hepatocytes pretreated with BCNU within 1 h. DPPD prevented cell death at 1 h, and there was evidence of lipid peroxidation in the accumulation of malondialdehyde in the culture medium. Catalase added with menadione did not prevent the cell killing at 1 h but did prevent it at 3 h. These data indicate that catalase and the GSH-GSSG cycle are active in the defense of hepatocytes against the toxicity of H2O2.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract