The tongue facilitates vital activities such as swallowing. Difficulty swallowing (dysphagia) is common in the elderly population and in patients with adult-onset neuromuscular disease. In oculopharyngeal muscular dystrophy (OPMD), dysphagia is often the first symptom. OPMD is an autosomal-dominant myopathy caused by a trinucleotide-expansion mutation in the gene encoding nuclear poly(A)-binding protein (PABPN)-1. Expanded-mutant PABPN1 forms insoluble nuclear aggregates that reduce the levels of the soluble form. Clinical tongue involvement in OPMD has been documented but is poorly understood. Histopathologic analysis of the tongue in an OPMD mouse model was done by light and electron microscopy combined with RNA sequencing. PABPN1 nuclear aggregates were found at moderate levels, whereas deposition of insoluble PABPN1 in blood vessels was prominent already at age 4 months. Muscle wasting of the tongue was age associated. RNA signatures of the OPMD tongue were enriched for mitochondrial and cytoskeletal genes. Electron microscopy revealed abnormalities in sarcomere and mitochondria organization in A17/+ mice, suggesting an energy and contractile deficit in OPMD tongue. This detailed analysis of the histopathology of the tongue in the A17/+ mouse model opens new avenues for understanding the mechanisms of dysphagia.
Read full abstract