β-tubulin isotypes regulate the structure and bundling of microtubule (MT) lattice, its dynamics, and resulting functions. They exhibit differential tissue expression, varying due to physical and biochemical cues. In this work, we investigated the effect of transient heat shock at 42°C on the nuclear and cytoplasmic stiffness of SH-SY5Y neuroblastoma cells through atomic force microscopy. Moreover, the variations in the expression of β-tubulin isotypes as a heat shock response were also monitored. The heat-exposed cells endured a recovery at 37°C for 24h and they manifested an increase of cytoplasmic stiffness by 130 ± 25% with respect to untreated controls. The expression of β-II tubulin isotype in heat-recovered cells is augmented by 51 ± 5% whereas the levels of total tubulin and β-III tubulin isotype remain unaltered. Upon depletion of β-II tubulin isotype using shRNA, the increase in cytoplasmic stiffness was dampened. However, it remained unaffected upon depletion with β-III tubulin isotype shRNA. This features the role of the β-II tubulin isotype in regulating cellular stiffness. In addition, neuroblastoma SH-SY5Y cells undergo differentiation by initiating neuritogenesis and prior evidence suggests the indispensable role of β-II tubulin isotype in this process. The heat-recovered cells which expressed higher levels of β-II tubulin isotype expedited the differentiation process in 3-day which was around 5-day for control cells, however, upon depletion of β-II tubulin isotype, the cells almost lost their differentiation potential. Altogether, this work highlights the role of β-II tubulin isotype as a biomarker for cellular stiffness.
Read full abstract