Dendritic cells (DCs) induce peripheral Tcell tolerance, but cell-intrinsic signaling cascades governing their stable tolerogenesis remain poorly defined. Janus Kinase 1 (JAK1) transduces cytokine-receptor signaling, and JAK inhibitors (Jakinibs), including JAK1-specific filgotinib, break inflammatory cycles in autoimmunity. Here, we report in heterogeneous DC populations of multiple secondary lymphoid organs that JAK1 promotes peripheral Tcell tolerance during experimental autoimmune encephalomyelitis (EAE). Mice harboring DC-specific JAK1 deletion exhibit elevated peripheral CD4+ Tcell expansion, less regulatory Tcells (Tregs), and worse EAE outcomes, whereas adoptive DC transfer ameliorates EAE pathogenesis by inducing peripheral Tregs, programmed cell death ligand 1 (PD-L1) dependently. This tolerogenic program is substantially reduced upon the transfer of JAK1-deficient DCs. DC-intrinsic IFN-γ-JAK1-STAT1 signaling induces PD-L1, which is required for DCs to convert CD4+ Tcells into Tregs invitro and attenuated upon JAK1 deficiency and filgotinib treatment. Thus, DC-intrinsic JAK1 promotes peripheral tolerance, suggesting potential unwarranted DC-mediated effects of Jakinibs in autoimmune diseases.
Read full abstract