Sunscreens contain several substances that cause damage to species where they are disposed. New formulations have been created to prevent such marine environmental damages. One promising formulation is the microencapsulated sunscreen. The objective of this study was to evaluate the possible safety to marine environment of one microencapsulated sunscreen formulation. The animal model Artemia salina (cists and nauplii) was tested with two sunscreen formulations (microencapsulated and non-microencapsulated) and toxicological, behavioral, morphological parameters as well as biochemical assays (lipoperoxidation and carbonylation tests) were analyzed. Results showed that microencapsulated sunscreen impeded some toxic effects caused by the release of the substances within the microcapsule in the highest concentration, reestablishing the mortality and hatching rates to control levels, while removing the sunscreen microcapsule by adding 1 % DMSO reduced the cyst hatching rate, increasing the nauplii mortality rate and decreased locomotor activity in higher concentrations. Finally, nauplii with 24 hours of life and exposed to sunscreen without the microcapsule showed an increase in mitochondrial activity (assessed at 48 hours after exposure) and presented malformations when exposed to the highest concentration non-microencapsulated concentration (assessed by SEM at 72 hours after exposure), when compared to the control group. These results together allow us to conclude that the microencapsulation process of a sunscreen helps protecting A. salina from the harmful effects of higher concentrations of said sunscreens. However, long-term studies must be carried out as it is not known how long a microencapsulated sunscreen can remain in the environment without causing harmful effects to the marine ecosystem and becoming an ecologically relevant pollutant.