Abstract

The athecate, pseudocolonial polykrikoid dinoflag-ellates show a greater morphological complexity than many other dinoflagellate cells and contain not only elaborate extrusomes but sulci, cinguli, flagellar pairs, and nuclei in multiple copies. Among polykrikoids, Polykrikos kofoidii is a common species that plays an important role as a grazer of toxic planktonic algae but whose life cycle is poorly known. In this study, the main life cycle stages of P. kofoidii were examined and documented for the first time. The formation of gametes, 2-zooid-1-nucleus stages very different from vegetative cells, was observed and the process of gamete fusion, isogamy, was recorded. Karyogamy followed shortly after completed plasmogamy. A complex reorganization of furrows (cinguli and sulci) and flagella followed zygote formation, resulting in a 4-zooid zygote with one nucleus. The fate of zygotes under different nutritional conditions was also investigated; well-fed zygotes were able to reenter the vegetative cycle via meiotic divisions as indicated by nuclear cyclosis. However, nuclear cyclosis was preceded by a presumably mitotic division of the primary zygote nucleus which by definition would imply that P. kofoidii has a diplohaplontic life cycle. Nuclear cyclosis in germlings hatched from spiny resting cysts indicate that these cysts are of zygote origin (hypnozygotes). Hypnozygote formation, cyst hatching, the morphology of the germling (a 1-zooid cell), and its development into a normal pseudocolony are documented here for the first time. There is evidence that P. kofoidii has a system of complex heterothallism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.