Background Serotonin (5-HT) is a neurotransmitter with extensive physiological influence in the central nervous system (CNS) and various behavioral and biological functions, including immune regulation through 5-HT receptors (5-HTRs) expressed by immune cells. A variety of serotonin-modulating drugs have been developed to treat neurological disorders. Phenelzine, a drug indicated for the management of treatment-resistant depression, is a potent, non-selectiveinhibitor of monoamine oxidase (MAO), the enzyme that metabolizes serotonin to 5-hydroxyindole acetic acid (5-HIAA). Given the emerging evidence of a bidirectional link between depression and inflammation, as well as the potential therapeutic applications of serotonin-modulating drugs in autoimmune diseases and cancer, our study investigated the pro-inflammatory and anti-inflammatory factors influenced by serotonin and phenelzine. Methodology We conducted experiments on RAW264.7 macrophages, exposing them to various combinations and concentrations of serotonin, 5-HIAA, and phenelzine. We assessed the relative gene expression of monoamine oxidase-A (MAO-A), CYP1B1, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) using real-time PCR and measured the production of IL-6, TNF-α, and IL-10 cytokines using enzyme-linked immunosorbent assays (ELISA). Results Our findings revealed that phenelzine can downregulate genes associated with the production of reactive oxygen and nitrogen species, reduce aryl hydrocarbon receptor (AHR)-related gene expression induced by serotonin, and enhance the production of inflammatory cytokines. These effects were significantly influenced by the concentration of available serotonin. Conclusions Our study demonstrates that various mechanisms, including AHR activation, modulation of reactive oxygen and nitrogen speciesproduction, and others, in addition to the increased availability of serotonin due to phenelzine treatment, can significantly influence the inflammatory state.
Read full abstract