This paper presents the research carried out to improve machining productivity when conducting external cylindrical grinding of 160Cr12Mo steel on the basis of meeting requirement of surface roughness of workpiece. External cylindrical grinding test of 160Cr12Mo steel was based on the optimal test matrix based on symmetrical D with Al2O3 grinding wheel. The test data was analyzed to develop regression function to show the relationship between surface roughness with cutting parameters including cutting velocity, depth of cut and feed rate. Basing on this regression equation, the level of influence of each cutting parameters on surface roughness of workpiece was determined, thereby solutions could be found to improve grinding productivity by increasing the depth of cut but meeting the required roughness value. The test was carried out when it was desirable to improve machining productivity but meeting the machining surface having small roughness. The results showed that it is feasible to increase the depth of cut to increase machining productivity up to 1.8 times while the surface roughness also increases only about 0.6 m.
Read full abstract