Uncorrected refractive errors pose a significant challenge globally, particularly in remote regions of low-middle income countries where access to optometric care is often limited. Telerefraction, which involves refraction by a trained technician followed by real-time consultation with remote optometrist, is a promising approach for such remote settings. This study aimed to evaluate the accuracy of this model. This prospective study, conducted in New Delhi, compared tele-refraction to in-person examinations. Trained technicians used a simple device, Click-check, to perform objective refraction and a tele-refraction platform to enter the findings of objective refraction. Final prescription was made after consulting a remote optometrist on that platform. Masked face-to-face optometrists served as the gold standard. The study involved refraction in 222 patients and 428 eyes. Tele-refraction demonstrated a strong agreement with in-person optometry, achieving 84.6% in spherical correction and 81% conformity in spherical equivalent. The mean difference of spherical equivalent between the two arms was only 0.11 D. The consultation with a remote optometrist improved conformity of spherical equivalent by 14.8% over objective refraction. 82 percent eyes matched in best corrected visual acuity and 92 percent were within 0.1 logMAR difference. For cylindrical axis, 74% eye were within acceptable 10 degrees of difference. The mismatch amongst the individual trained technicians, in terms of difference between the tele-refraction arm and the face-to face optometrist arm was found to be significant for cylindrical axis and not for spherical power and spherical equivalent. Our study found tele-refraction by a trained technician comparable to refraction done by face-to-face optometrist. Tele-refraction, coupled with remote optometrist guidance can address the optometry resource gap in underserved areas. Thus, this model offers a transformative approach to enhancing the accessibility and quality of eye care services, which can significantly contribute to our efforts in achieving the global targets set by the World Health Organization for effective refractive error coverage. More standardized training for these technicians on ClickCheckTM for detecting the cylindrical axis with better accuracy, can improve this model further.
Read full abstract