Flow past two cylinders in tandem arrangement under forced vibration has been studied experimentally employing the hydrogen bubble visualization technique. The Reynolds number, based on the cylinder diameter, is fixed at Re=250. In stationary state of the two cylinders with P/D=2.0, dual vortex shedding frequencies fL (St=0.14) and fH (St=0.18) are identified. fL is associated with the shear layer reattachment behavior and fH is related to the single bluff body behavior. Under a variety of forced vibrations of the two cylinders at a fixed vibration amplitude A/D=0.25, diverse and highly-repetitive vortex patterns are yielded. They are classified into two typical modes—a low-frequency mode and a high-frequency mode. The two modes are represented by two vortex patterns yielded from in-phase vibration of the two cylinders with P/D=2.0 and at vibration frequencies fe≈fL and fe≈fH. The difference between the two modes is on the number of vortices formed per vibration cycle. For the low-frequency mode, the number is four; for the high-frequency model, it is two. In both modes, the vortex formation is phase-locked to the cylinder motion. For a specified mode with a fixed vortex number per cycle, the way the vortices evolve in the wake can be somewhat different by changing the vibration frequency, pitch ratio, as well as the vibration type. These affecting factors have been examined in this work, and the associated vortex patterns have been characterized and compared.
Read full abstract