This paper studies Galois extensions over real quadratic number fields or cyclotomic number fields ramified only at one prime. In both cases, the ray class groups are computed, and they give restrictions on the finite groups that can occur as such Galois groups. Let [Formula: see text] be a real quadratic number field with a prime P lying above p in ℚ. If p splits in K/ℚ and p does not divide the big class number of K, then any pro-p extension of K ramified only at P is finite cyclic. If p is inert in K/ℚ, then there exist infinite extensions of K ramified only at P. Furthermore, for big enough integer k, the ray class field (mod Pk+1) is obtained from the ray class field (mod Pk) by adjoining ζpk+1. In the case of a regular cyclotomic number field K = ℚ(ζp), the explicit structure of ray class groups (mod Pk) is given for any positive integer k, where P is the unique prime in K above p.
Read full abstract