Sudan I, is one of the commonly used azo dyes in food samples, which has shown adverse effects on human health. Therefore, determining the level of Sudan I in food samples can be very effective in ensuring food safety and protecting human health. In this study, an electrochemical sensing platform was designed using Ni-Fe layered double hydroxide nanosheets and ionic liquid modified carbon paste electrode (Ni-Fe LDH/ILCPE) which was utilized to determine Sudan I. Comparison of cyclic voltammograms of Sudan I on the unmodified CPE and Ni-Fe LDH/ILCPE showed that, the higher oxidation currents were obtained on the surface of the Ni-Fe LDH/ILCPE, indicating that the modified CPE owns significant surface improvement effects and good electrochemical performance in detecting Sudan I. Under optimized conditions, the developed Ni-Fe LDH/ILCPE sensor demonstrated a linear relationship between the voltammetric response and Sudan I concentrations from 0.03 µM to 510.0 µM with a low detection limit (LOD) of 0.01 µM based on S/N = 3.0. Additionally, the Ni-Fe LDH/ILCPE platform exhibits high accuracy, with a recovery of 96.4 % to 104.1 % for Sudan I determination in food samples including Ketchup and Chilli powder, which implies that it will be a potential detection method for Sudan I detection.
Read full abstract