To enhance the mechanical properties and high-temperature performance of cordierite–mullite composite ceramics, yttrium oxide (Y2O3), a rare earth metal oxide, was employed as a sintering aid to fabricate these composites via in situ synthesis and non-pressure sintering. This study systematically investigated the formation mechanisms of the cordierite and mullite phases and examined the effects of yttrium oxide on the densification behavior, mechanical properties, volumetric stability, and thermal shock resistance. The results indicate that incorporating yttrium oxide (1.5–6.0 wt%) not only promoted the formation of the cordierite phase but also refined the microstructure and enhanced the thermal shock stability at a sintering temperature of 1350 °C. An optimal addition of 3 wt% yttrium oxide ensures that the primary phases are cordierite and mullite, with a microstructure characterized by uniformly distributed micropores, hexagonal short-columnar cordierite, and interlocking rod-like mullite, thereby significantly improving both the mechanical properties and thermal shock stability. Specifically, the room-temperature compressive strength increased by 121%, the flexural strength increased by 177%, and, after three thermal shock cycles at 1100 °C, the retention rates for compressive and flexural strengths were 87.66% and 71.01%, respectively. This research provides a critical foundation for enhancing the mechanical properties and high-temperature service performance of cordierite–mullite saggers used in lithium battery cathode materials.
Read full abstract