The corrosion resistance of thin NiTi wires in unstrained state and at 6% of pseudoelastic strain was determined by cyclic potentiodynamic polarization, considering a surface area of 2.3 cm2, equivalent to that of an actual minimally invasive implant. Surface finishing was carried out by mechanical polishing, electropolishing, and subsequent heat treatment in a salt bath furnace. Topography, microstructure, and composition of the respective surfaces were characterized in detail using light and electron microscopy, as well as glow discharge optical emission spectroscopy. Whereas breakdown below 1000 mV was observed for wires in mechanically polished condition in unstrained and strained state, wires in electropolished and electropolished + heat-treated condition exhibit no breakdown up to 1000 mV. Multiple testing reproduced uniform potentiodynamic polarization curves in unstrained and strained state. Accordingly, the observed formation of cracks in the surface oxide layer of wires in electropolished + heat-treated condition is concluded to be negligible in unstrained and strained state. Cause for the observed high performance of both the electropolished and the electropolished + heat-treated wires is apparently the smoothing of the initial surface that results in a homogeneous oxide layer even after heat treatment.
Read full abstract