Camu-camu (Myrciaria dubia) is a tropical fruit known for its content of bioactive compounds. This study aimed to evaluate physicochemically, morphologically, andsensorialpowders from camu-camu obtained by spray-drying at two inlet temperatures (150 °C and 180 °C) with three encapsulating agents (maltodextrin, whey protein and a 50:50 mixture of both) and by freeze-drying of whole fruit. The use of maltodextrin protected bet anthocyanins (cyanidin-3-glucoside (C3G) and delphinidin-3-glucoside (D3G)), but whey protein showed a better protective effect on ascorbic and malic acids. These facts were confirmed during the storage stability test, finding that relative humidity is a critical variable in preserving the bioactive compounds of camu-camu powders. The powders with the highest content of bioactive compounds were added to a yogurt and a white grape juice, and then sensory evaluated. The bioaccessibility studies in gastric and intestinal phases showed better recovery percentages of bioactive compounds in camu-camu powders (up to 60.8 %) and beverages (up to 90 %) for C3G, D3G, ascorbic acid, and malic acid than in the fruit juice. Dehydration of camu-camu (M. dubia) is a strategy to increase the bioactive compounds stability, modulate the fruit sensory properties, and improve their bioavailability after incorporation in food matrices.
Read full abstract