Uranium extraction from seawater is a potential technique that will change the world. Adsorption capacity, selectivity, and antibacterial ability for high-performance uranium adsorbents remain the major challenges. In this study, a dual-ligand zeolitic imidazolate framework 8 (ZIF-8) decorated with cyano groups (ZIF-8-CN) is prepared via a facile blend strategy at room temperature. Owing to the abundant mesopores and nitrogen functional groups, ZIF-8-CN shows an extremely high uranium uptake of 1000 mg/g at pH = 6, which is 2.42 times that of pristine ZIF-8. Noteworthily, ZIF-8-CN possesses a 16.2 mg/g uranium adsorption in natural seawater within 28 days, and the distribution coefficient (Kd = 3.25 × 106 mL/g) is far greater than that for other coexisting metal ions, demonstrating a marked preference for uranyl ions. Except for the coordination between uranium and nitrogen in imidazole, the cyano groups provide additional adsorption sites and preferentially bind to uranyl, thereby strengthening the affinity for uranyl. Notably, ZIF-8-CN displays ultrastrong antimicrobial ability against both Escherichia coli and Staphylococcus aureus, which is greatly desired for the scale-up marine tests. Our study demonstrates the high potential of ZIF-8-CN in uranium capture and provides a wide scope for the application of mixed-ligand MOFs.