Mutants of Salmonella typhimurium defective in the proteins of the fructose operon [fruB(MH)KA], the fructose repressor (fruR), the energy-coupling enzymes of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) (ptsH and ptsI), and the proteins of cyclic AMP action (cya and crp) were analyzed for their effects on cellular physiological processes and expression of the fructose operon. The fru operon consists of three structural genes: fruB(MH), which encodes the enzyme IIIFru-modulator-FPr tridomain fusion protein of the PTS; fruK, which encodes fructose-1-phosphate kinase; and fruA, which encodes enzyme IIFru of the PTS. Among the mutants analyzed were Tn10 insertion mutants and lacZ transcriptional fusion mutants. It was found that whereas a fruR::Tn10 insertion mutant, several fruB(MH)::Mu dJ and fruK::Mu dJ fusion mutants, and several ptsHI deletion mutants expressed the fru operon and beta-galactosidase at high constitutive levels, ptsH point mutants and fruA::Mu dJ fusion mutants retained inducibility. Inclusion of the wild-type fru operon in trans did not restore fructose-inducible beta-galactosidase expression in the fru::Mu dJ fusion mutants. cya and crp mutants exhibited reduced basal activities of all fru regulon enzymes, but inducibility was not impaired. Surprisingly, fruB::Mu dJ crp or cya double mutants showed over 10-fold inducibility of the depressed beta-galactosidase activity upon addition of fructose, even though this activity in the fruB::Mu dJ fusion mutants that contained the wild-type cya and crp alleles was only slightly inducible. By contrast, beta-galactosidase activity in a fruK::Mu dJ fusion mutant, which was similarly depressed by introduction of a crp or cya mutation, remained constitutive. Other experiments indicated that sugar uptake via the PTS can utilize either FPr-P or HPr-P as the phosphoryl donor, but that FPr is preferred for fructose uptake whereas HPr is preferred for uptake of the other sugars. Double mutants lacking both proteins were negative for the utilization of all sugar substrates of the PTS, were negative for the utilization of several gluconeogenic carbon sources, exhibited greatly reduced adenylate cyclase activity, and were largely nonmotile. These phenotypic properties are more extreme than those observed for tight ptsH and ptsI mutants, including mutants deleted for these genes. A biochemical explanation for this fact is proposed.
Read full abstract