The authors extend their previous work published in Leontyev and TachiyaJ. Chem. Phys. 123, 224502 (2005) and study not only forward but also reverse electron transfer between pyrene and dimethylaniline in a nonpolar solvent, n-hexane. The distribution function methodology and molecular dynamics technique adopted in their previous work are used. Two algorithms (I and II) are formulated for obtaining the reorganization energy and the solvation free energy difference in the linear response approximation. The two algorithms are combined with different cutoff schemes and tested for polarizable and nonpolarizable solvent models. Agreement between the results obtained by the two algorithms was achieved only for simulations employing the particle mesh Ewald treatment. It is concluded that algorithm I provides a reliable scheme for evaluation of the reorganization energy and the solvation free energy difference. Moreover, a new algorithm referred to as the G-function algorithm is formulated which does not assume the linear response approximation, and is tested on evaluation of the solvation free energy difference. Agreement between the results from the G-function algorithm and those from algorithms I and II is fairly good, although it depends on the degree of statistical consistency of the simulations. In the case of nonpolar solvents the G-function method has practical importance because, unlike the conventional thermodynamic integration approach, it requires equilibrium molecular configuration ensembles only for the initial and final states of the system.
Read full abstract