To compete with other stores, store owners need to design various strategies, one of which is understanding customer purchase patterns. This article examines the Squeezer algorithm and compares the performance of the Apriori and FP-Growth algorithms in forming customer purchase association patterns that can be used as a reference for store owners in planning sales strategies. The data mining process was carried out using Association Rules and Clustering methods. A total of 1256 sales transaction data samples were analyzed to understand the association patterns produced by each method. Based on the test results with a minimum support of 0.2 and a confidence of 0.6, the Apriori algorithm produced 194 association rules with a total rule strength of 1.16. Meanwhile, the FP-Growth algorithm produced 52 association rules with the same total rule strength of 1.16. The Clustering Method resulted in 7 clusters with a similarity value of 0.06322. After comparison, the FP-Growth algorithm proved to have better performance in generating association rules compared to the Apriori algorithm.