Abstract We study the quotient variety of the space of foliations on ℂ ℙ 2 {\mathbb{CP}^{2}} of degree 2 up to change of coordinates. We find the intersection Betti numbers of this variety. As a corollary, we have that these intersection Betti numbers coincide with the intersection Betti numbers of the quotient variety of quartic plane curves. Finally, we give an explicit isomorphism between the space of foliations of degree 2 with different singular points, without invariant lines and the space of smooth quartic plane curves.
Read full abstract