Soft contact lenses with spherical base curves have been used for many years. The computation of the refractive powers of these lenses is easy, requiring only that one uses the lens maker equation for thick lenses. Nevertheless, for customized contact lenses, there is yet no reliable method for measuring the higher order optical aberrations. In this study we have developed in the Center for Visual Sciences of the University of Rochester an optical apparatus that allows for precise measurement of low and high order aberrations of customized soft contact lenses. An optical apparatus was mounted on a conventional optical bench. This apparatus consists of a wet cell where the contact lenses are placed, a series of relay lenses, mirrors, beam splitters, and a Hartmann-Shack sensor. Bausch & Lomb manufactured the lenses used in this study. The root mean square error (RMSE) of the instrument was 0.04 microns. Given that the RMSE of the customized lens is between 4 and 6 microns, i.e., the precision of the instrument is approximately 1%. This precision is more than sufficient for the type of measurements necessary for manufacturing customized contact lenses. The instrument developed is extremely precise for measuring high order aberrations--up to the 10th order Zernike polynomials, that is, up to the 66th term. This technology is important for the development of new methods of optical corrections for patients that usually do not adapt to normal sphere-cylinder spectacles or that cannot undergo refractive surgery, such as those which have keratoconus, for example.