A key question in the neuroscience of memory encoding pertains to the mechanisms by which afferent stimuli are allocated within memory networks. This issue is especially pronounced in the domain of working memory, where capacity is finite. Presumably the brain must embed some "policy" by which to allocate these mnemonic resources in an online manner in order to maximally represent and store afferent information for as long as possible and without interference from subsequent stimuli. Here, we engage this question through a top-down theoretical modeling framework. We formally optimize a gating mechanism that projects afferent stimuli onto a finite number of memory slots within a recurrent network architecture. In the absence of external input, the activity in each slot attenuates over time (i.e., a process of gradual forgetting). It turns out that the optimal gating policy consists of a direct projection from sensory activity to memory slots, alongside an activity-dependent lateral inhibition. Interestingly, allocating resources myopically (greedily with respect to the current stimulus) leads to efficient utilization of slots over time. In other words, later-arriving stimuli are distributed across slots in such a way that the network state is minimally shifted and so prior signals are minimally "overwritten." Further, networks with heterogeneity in the timescales of their forgetting rates retain stimuli better than those that are more homogeneous. Our results suggest how online, recurrent networks working on temporally localized objectives without high-level supervision can nonetheless implement efficient allocation of memory resources over time.
Read full abstract