This study explores the transformative potential of artificial intelligence (AI) in revolutionizing earthquake risk mitigation across six key areas. Unlike traditional approaches, this paper examines how AI-driven innovations can uniquely enhance early warning systems, enabling real-time structural health monitoring, and providing dynamic, multi-hazard risk assessments that seamlessly integrate seismic data with other natural hazards such as tsunamis and landslides. It introduces groundbreaking applications of AI in earthquake-resilient design, where generative design algorithms and predictive analytics create structures that optimally balance safety, cost, and sustainability. The study also presents a novel discussion on the ethical implications of AI in this domain, stressing the critical need for transparency, accountability, and bias mitigation. Looking forward, the manuscript envisions the development of advanced AI platforms capable of delivering real-time, personalized risk assessments, immersive public training programs, and collaborative design tools that adapt to evolving seismic data. These innovations promise not only to significantly enhance current earthquake preparedness but also to pave the way toward a future where the societal impact of earthquakes is drastically reduced. This work underscores the potential of AI’s role in shaping a safer, more resilient future, emphasizing the importance of continued innovation, ethical governance, and collaborative efforts.