This study uses numerical simulations to investigate the effects of magnetic field topology resulting from various polywell fusion setup configurations, including the cube configuration (6 coils), dodecahedron configuration (12 coils), double-layer configuration (14 coils) and disco configuration (26 coils). The results suggest that increased number of magnetic coils and magnitude of magnetic flux density through increased coil current leads to a longer electron confinement time. This is shown by the increased magnetic flux density and magnetic well width with increasing number of coils. In addition, each configuration is investigated to predict the capacity of electron confinement. Numerical electron injections are applied to each magnetic field topology to determine the decay behavior of electron numbers, from which the electron confinement time is calculated.