Abstract We consider a relativistic two-fluid model of superfluidity, in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation (NLKG). The coupling to the normal fluid is introduced via a covariant current-current interaction, which results in the addition of an effective potential, whose imaginary part describes particle transfer between superfluid and normal fluid. Quantized vorticity arises in a class of singular solutions and the related vortex dynamics is incorporated in the modified NLKG, facilitating numerical analysis which is usually very complicated in the phenomenology of vortex filaments. The dual transformation to a string theory description (Kalb-Ramond) of quantum vorticity, the Magnus force and the mutual friction between quantized vortices and normal fluid are also studied.
Read full abstract