Chemical recycling of polymers to the corresponding monomers offers a valuable solution to address the current plastics crisis for creating an ideal and circular polymer economy. Here, we present a bimetallic synergistic depolymerization of the widely studied CO2-based polycarbonates, poly(cyclohexene carbonate)s, to epoxide monomers efficiently. The bimetallic CrIII-complex-mediated highly selective depolymerization and repolymerization was achieved via the regulation of reaction temperature, thus closing the circular loop of poly(cyclohexene carbonate)s in situ. Mechanistic investigation has revealed that the formation of epoxides undergoes a direct chain-end unzipping process. A bimetallic catalysis involving a nucleophilic attack of the metal-alkoxide species toward the methine carbon atom bound with an adjacent carbonyl that is activated by the other metal center features a lower energy barrier in DFT calculations, which promotes the epoxide extrusion.
Read full abstract