Textile industries are one of the leading environmental pollutants by releasing harmful dye effluents. In many textile distrts, the amount of excess color in treated textile effluent that exceeds regulatory limitations is still being a major concern. The combining usage of nanomaterials and polymer material to solve these issues using various techniques. In this research, graphene oxide-copper oxide (GO-CuO) nanomaterial have been incorporated into cellulose-acetate (CA), poly-ether sulfone (PES) blend polymer by using phase inversion process to fabricate thin film nanocomposite (TFN) membrane for removal of dye pollutant. The physiochemical properties of prepared TFN materials were studied by Fourier transform infra-red spectroscopy (FT-IR), X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), thermo gravimetric analysis (TGA), and mechanical strength analysis. Dye adsorption experiments were performed with four typical water-soluble organic dyes methylene blue (MB), rhodamine blue (Rh. B), methyl orange (MO) and Congo red (CR). After reaching adsorption equilibrium, the composite membrane final removal effectiveness for MB 92.42%, Rh. B 89.39%, CR 68.39%, and MO 58.82% respectively. As a result, the fabricated TFN material proves to be an effective adsorbent material for cationic dye molecules. Also, when the fabricated material was tested with textile industry effluent sample, all physio-chemical properties exhibited a considerable decrease in concentrations when compared to the real textile effluent concentration. The treated effluents permitted for a relatively greater growth and germination index of Tropical amaranth roots than the textile effluent, this demonstrates that phytotoxicity testing was also successful. The most effective temperature, concentration and pH were found to be 273K, 1 × 10-5M and pH 9. The fabricated TFN membrane material (GO-CuO @ CA-PES) can be recommended for water treatment applications.