The objective of this study was to describe the patterns of failure, frequency of low-volume relapse (LVR), and candidacy for ablative therapy at time of disease progression (PD) after chemoradiation and consolidative immunotherapy (CRT + ICI) in patients with stage III non-small cell lung cancer. We identified 229 consecutive patients with stage III non-small cell lung cancer treated with CRT + ICI between October 2017 and December 2021 at a single institution. PD was classified as isolated locoregional failure (LRF), isolated distant failure (DF), or synchronous LRF + DF. Any LRF was subclassified as in-field failure, marginal failure, or out-of-field failure. LVR was defined as 3 or fewer sites of PD in any number of organs. Ablative candidates were defined as having 5 or fewer sites of PD radiographically amenable to high-dose radiation or surgery. Time-to-event data were calculated using cumulative incidence analysis and Kaplan-Meier methods. Multivariable Cox modeling was used to examine the correlations between characteristics of relapse and postprogression survival. Of the 229 patients, 119 (52%) had PD. Of these 119 patients, 20 (21%) had isolated LRF, 28 (24%) had synchronous LRF + DF, and 71 (60%) had isolated DF. Of the 48 patients with any LRF, 28 (58%) had in-field failure, 10 (21%) marginal failure, and 10 (21%) out-of-field failure. The cumulative incidence of LRF and DF was 13% (95% CI, 9.2%-18%) and 32% (95% CI, 26%-38%) at 1 year and 19% (95% CI, 14%-24%) and 39% (95% CI, 33%-46%) at 2 years, respectively. Overall, 64 patients (54%) were considered to have LVR. At time of PD, 60 patients (50%) were eligible for ablative therapy. Patients with LVR had longer median survival versus with high-volume relapse (37.4 vs 15.2 months, P < .001). On multivariable analysis, LVR (hazard ratio, 0.32; 95% CI, 0.18-0.56; P < .001) was associated with improved postprogression survival. After CRT + ICI, approximately half of patients experience LVR at time of PD and are candidates for ablative therapies. Prospective trials are needed to validate the optimal treatment strategy for LVR.
Read full abstract