Urban water supply pipelines experience repetitive traffic loads during their operational lifespan, potentially leading to fatigue failure. However, existing research focuses primarily on the static or dynamic mechanical responses of pipes, with limited studies on the fatigue performance of pipes. This study investigates the fatigue performance and failure mechanism of DN200 ductile iron (DI) pipes with socket joints under traffic loads and water pressure through bending fatigue tests. First, the mechanical responses of pipe joints under traffic loads derived from statistical data on highway traffic loads, soil pressure, and self-weight are calculated using ABAQUS to give the fatigue test load amplitude. Subsequently, tests are conducted on three DN200 DI pipes under a water pressure of 0.2 MPa: one for a monotonic test and two for fatigue tests under extra car and bus loads, respectively. The fatigue life of pipes under various traffic load combinations is analyzed using cumulative damage theory. Moreover, the relationship between fatigue load amplitude and number of cycles for DN200 DI pipes are obtained on the basis of the test data. Results show that the maximum rotation angle of joint is an important indicator of failure. Finally, a theoretical method for calculating the joint angle is proposed on the basis of geometric dimensions. A good agreement between the test and theoretical results is observed. Thus, the proposed method can obtain the fatigue performance of joints effectively.
Read full abstract