Abstract
PurposeScholars mainly propose and establish theoretical models of cumulative fatigue damage for their research fields. This review aims to select the applicable model from many fatigue damage models according to the actual situation. However, relatively few models can be generally accepted and widely used.Design/methodology/approachThis review introduces the development of cumulative damage theory. Then, several typical models are selected from linear and nonlinear cumulative damage models to perform data analyses and obtain the fatigue life for the metal.FindingsConsidering the energy law and strength degradation, the nonlinear fatigue cumulative damage model can better reflect the fatigue damage under constant and multi-stage variable amplitude loading. In the following research, the complex uncertainty of the model in the fatigue damage process can be considered, as well as the combination of advanced machine learning techniques to reduce the prediction error.Originality/valueThis review compares the advantages and disadvantages of various mainstream cumulative damage research methods. It provides a reference for further research into the theories of cumulative fatigue damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.