The Mu Us dune field is one of China’s four major dune fields, which are ecologically vulnerable areas of northwest semiarid land across Shaanxi, Ningxia, and Inner Mongolia, also very sensitive to the global temperature rise and environmental changes. This paper uses data on the temperature, precipitation, and precipitable water vapor (PWV) in the Mu Us dune field and its surrounding areas to analyze and discuss the time series and spatial distribution characteristics of these three factors in this area. The results of the study show that, in recent years, the trend of temperature increase in the Mu Us dune field has been higher than the average level in China, but this trend has gradually subsided since 2000. The spatial distribution of temperature presents an obvious characteristic of gradual increase from north to south and is affected by latitude, altitude, and topography. The annual cumulative precipitation of the Mu Us dune field is lower than the average level in China. However, in recent years, the rate of the increase in precipitation in this area has been significantly higher than that of the average rate of increase in China. The eastern part of the dune field has the most precipitation, which gradually decreases to the west. The spatial distribution of precipitation is greatly affected by monsoon factors in the region and the distribution of rivers. In the research field, PWV has been rising in recent years, which is greatly related to the increase of vegetation coverage in this region. This demonstrates that the Mu Us dune field has experienced a “warmer and wetter” trend in recent years.
Read full abstract