The effect of fatty acid desaturation on lipid fluidity in thylakoid membranes isolated from the STR7 mutant was investigated by electron paramagnetic resonance (EPR) using spin label probes. The spectra of both 5- and 16- n-doxylstearic acid probes were measured as a function of the temperature between 10 and 305 K and compared to those of the wild type. This complete thermal evolution provides a wider picture of the dynamics. The spectra of the 5- n-doxylstearic acid probe as well as their temperature evolution were identical in both STR7 mutant and wild type thylakoids. However, differences were found with the 16- n-doxylstearic acid probe at temperatures between 230 and 305 K. The differences in the thermal evolution of the EPR spectra can be interpreted as a 5–10 K shift toward higher temperatures of the probe motional rates in the STR7 mutant as compared with that in the wild type. At temperatures below 230 K no differences were observed. The results indicated that the lipid motion in the outermost region of the thylakoids is the same in the STR7 mutant as in the wild type while the fluidity in the inner region of the STR7 mutant membrane decreases. Our data point out a picture of the STR7 thylakoid membrane in which the lipid motion is slower most probably as a consequence of fatty acid desaturation deficiency.
Read full abstract