Coffea arabica cultivars Catuaí 44 and IAPAR 59, susceptible and resistant, respectively, to the root knot nematode Meloidogyne exigua, were grown in pots containing Si‐deficient soil amended with either calcium silicate (+Si) or calcium carbonate (−Si). There was an increase of 152 and 100%, respectively, in Si content of root tissue of cvs Catuaí 44 and IAPAR 59 in the +Si compared to the −Si treatment, but no significant difference between Si treatments for calcium content. Plants, assessed 150 days after inoculation (d.a.i.) showed that the number of galls (NG) and number of eggs (NE) significantly decreased by 16·8 and 28·1% respectively, for susceptible cv. Catuaí 44 in the presence of Si, whilst both NG and NE were significantly lower for cv. IAPAR 59 compared to the susceptible cultivar regardless of Si treatments. In a separate experiment, biochemical assays were carried out 5 and 10 d.a.i. There was no significant difference between Si treatments and cultivars for concentration of total soluble phenolics. The concentration of lignin‐thioglycolic acid (LTGA) derivatives significantly increased by 11·5% in roots of nematode‐inoculated plants of susceptible cv. Catuaí supplied with Si. In roots of inoculated plants of resistant cv. IAPAR 59, the increase was 23 and 10%, respectively, for treatments with and without silicon. Peroxidase (POX), polyphenoloxidase (PPO) and phenylalanine ammonia lyase (PAL) activities significantly increased in roots of inoculated plants compared with roots of non‐inoculated plants, regardless of cultivar or Si treatment. In +Si treatments at 10 d.a.i., POX activity in roots of nematode‐inoculated plants of cvs Catuaí 44 and IAPAR 59 increased by 39·9 and 31·3%, respectively; PPO increased by 54·9 and 56·1%; and PAL activity was also higher at 26·6 and 62·9%. It was concluded that supplying Si to coffee plants increases root resistance against M. exigua by decreasing its reproductive capacity.