AimsCultivar mixtures can increase productivity through complementarity in resource use, but reported results are often conflicting and the role of plasticity in shaping plant-plant interactions is poorly understood. We aim to determine if individual cultivars show different phenotypic responses when grown in a mixture, whether these responses depend on the neighboring cultivar identity, and how they contribute to variations in productivity and nitrogen (N) use.MethodsFive spring barley cultivars were field-grown in pure stands and in mixtures during 2 years. Plant traits related to development, growth, N use, and reproduction were measured to identify temporal patterns of plastic responses to neighboring plants.ResultsPlants in mixtures were shorter and developed slower early in the season, but later on they grew faster and produced more grain than the corresponding pure stands. Some cultivars showed complementary N accumulation only when grown together with specific neighbors. Mechanisms of improved productivity differed between the individual mixtures.ConclusionsPlastic plant-plant interaction between cultivars is an important driver behind the variability in mixing effects. Results contribute to a better understanding of how productivity in cultivar mixtures is affected by plastic adaptation and differentiation of plant traits, depending on the environment created by neighboring genotypes.