The males of different species of Bactrocera and Zeugodacus fruit flies are commonly attracted to plant-derived phenylpropanoids (e.g. methyl eugenol (ME)) or phenylbutanoids (e.g. raspberry ketone (RK)) but almost never to both. However, one particular plant-derived phenylbutanoid, zingerone (ZN), which possesses an intermediate chemical structure between ME and RK, weakly attracts both ME- and RK-responding fruit fly species. Bactrocera jarvisi, an Australian fruit fly species, is weakly attracted to cue lure (an analogue of RK) but strongly attracted to ZN. Here, we investigated the minimum olfactory threshold and optimum sensitivity of B. jarvisi males to ZN and RK as a function of dose, time and sexual maturation. Our results show that B. jarvisi males had a marked preferential response to ZN, with a much lower olfactory threshold and faster response time to ZN than RK. Probit analysis demonstrated that ZN was at least >1600× more potent than RK as a male attractant to B. jarvisi. Although fruit fly male attraction to the phytochemicals is generally associated with sexual maturity, in B. jarvisi immature males were also attracted to ZN. Our results suggest that B. jarvisi males have a fine-tuned olfactory response to ZN, which appears to play a central role in the chemical ecology of this species.