Thiolation can convert molybdate (MoO4) into a series of thiomolybdates (MoSxO4-x) in the rumen, terminating in tetrathiomolybdate (MoS4), a potent antagonist of copper absorption and, if absorbed, donor of reactive sulphide in tissues. Systemic exposure to MoS4 increases trichloroacetic acid-insoluble copper (TCAI Cu) concentrations in the plasma of ruminants and induction of TCAI Cu in rats given MoO4 in drinking water would support the hypothesis that rats, like ruminants, can thiolate MoO4. Data on TCAI Cu are presented from two experiments involving MoO4 supplementation that had broader objectives. In experiment 1, plasma Cu concentrations (P Cu) tripled in female rats infected with Nippostrongylus brasiliensis after only 5 days exposure to drinking water containing 70 mg Mo L−1, due largely to an increase in TCAI Cu; activities of erythrocyte superoxide dismutase and plasma caeruloplasmin oxidase (CpOA) were unaffected. Exposure for 45–51 days did not raise P Cu further but TCA-soluble (TCAS) Cu concentrations increased temporarily 5 days post infection (dpi) and weakened the linear relationship between CpOA and TCAS Cu. In experiment 2, infected rats were given less MoO4 (10 mg Mo L−1), with or without iron (Fe, 300 mg L−1), for 67 days and killed 7 or 9 dpi. P Cu was again tripled by MoO4 but co-supplementation with Fe reduced TCAI Cu from 65 ± 8.9 to 36 ± 3.8 μmol L–l. Alone, Fe and MoO4 each reduced TCAS Cu in females and males when values were higher (7 and 9 dpi, respectively). Thiolation probably occurred in the large intestine but was inhibited by precipitation of sulphide as ferrous sulphide. Fe alone may have inhibited caeruloplasmin synthesis during the acute phase response to infection, which impacts thiomolybdate metabolism.