This paper is concerned with the chemical looping combustion of coal in a technique whereby the fuel is gasified in situ using CO 2 in the presence of a batch of supported copper oxide (the “oxygen carrier”) in a single reactor. As the metal oxide becomes depleted, the feed of fuel is discontinued, the inventory of fuel is reduced by further gasification and then the contents are re-oxidised by the admission of air to the reactor, to begin the cycle again. A catalyst support, impregnated with a saturated solution of copper and aluminium nitrates, acted as a durable oxygen carrier over numerous cycles of reduction and oxidation, using air as the oxidant. Two bituminous coals (Taldinskaya, Russia, and Illinois No. 5, USA) were investigated and compared with a lignite (Hambach, Germany). The lignite was highly reactive and was gasified completely by 15 mol% CO 2 in N 2 at 1203 K and 1 bar, so that there was no build up of char in the bed. The bituminous coals produced chars much less reactive than the lignite char, so that there was a steady accumulation of char in the bed with number of cycles, with the degree of accumulation being dependent on the reactivity of the char. Since the kinetics of gasification by CO 2 of the chars from either bituminous coal were slow, their rates were controlled by intrinsic chemical kinetics and were not affected by the ability of the oxygen carrier to alter the rates of external mass transfer when gasification is rapid. However, it is likely that rates of gasification in the presence of the carrier are still larger than in its absence, owing to the overall lower [CO] present in the bulk of the fluidised bed during chemical looping. At the temperature used, the carrier was cycling between Cu and Cu 2O, since CuO is only stable if the partial pressure of O 2 exceeds 0.03 bar at 1203 K. The CuO decomposes to Cu 2O and O 2 relatively rapidly at these temperatures, once the oxygen concentration is effectively zero. It was impossible to ascertain in our experiments whether the oxygen so generated, after the switching of the air for nitrogen before the start of the succeeding cycle of gasification, made any substantial difference to the reactivity of the char present in the bed. The rate of oxidation of the carrier was found to be much more rapid than the rate of oxidation of the inventory of char. This allows a preferential oxidation of the carrier and most likely accounts for why progressively less CO and CO 2 is produced during successive cycles with short periods of oxidation: the increasingly reduced carrier reacts more rapidly than the char. There was no obvious impact from the sulphur contained in the fuels, but longer-term testing is needed. No agglomeration between the carrier particles and the ash was observed, despite the high temperatures during oxidation.