The zinc finger protein CTCF is ubiquitously expressed and is integral to the regulation of chromatin architecture through its interaction with cohesin. Conversely, CTCFL expression is predominantly restricted to the adult male testis but is aberrantly expressed in certain cancers. Despite their distinct expression patterns, the cooperative and competitive mechanisms by which CTCF and CTCFL regulate target gene expression in spermatocytes and cancer cells remain inadequately understood. In this review, we comprehensively examine the literature on the divergent amino acid sequences, target sites, expression profiles and functions of CTCF and CTCFL in normal tissues and cancers. We further elucidate the mechanisms by which CTCFL competitively or cooperatively binds to CTCF target sites during spermatogenesis and carcinogenesis to modulate chromatin architecture. We mainly focus on the role of CTCFL in testicular and cancer development, highlighting its interaction with CTCF at CTCF binding sites to regulate target genes. In the testis, CTCF and CTCFL cooperate to regulate the expression of testis-specific genes, essential for proper germ cell progression. In cancers, CTCFL overexpression competes with CTCF for DNA binding, leading to aberrant gene expression, a more relaxed chromatin state, and altered chromatin loops. By uncovering the roles of CTCF and CTCFL in spermatogenesis and carcinogenesis, we can better understand the implications of aberrant CTCFL expression in altering chromatin loops and its contribution to disease pathogenesis.