Abstract Gain of function mutations in isocitrate dehydrogenase I (IDH1) result in the formation of the oncometabolite 2-hydroxyglutarate (2HG) in adult lower grade gliomas. To gain insight into mechanisms of gliomagenesis, our lab previously created a tractable human cellular model of low grade astrocytoma (LGA) using the putative cell-of-origin, human neural stem cells (NSCs), engineered to express mutant IDH1 and knockdown constructs against TP53 and ATRX, the two other genetic changes that accompany the IDH mutation in these tumors. We found that transcription factor (sex determining region Y)-box 2 SOX2, which is essential to NSC multipotency, the ability to differentiate to neuroglial lineages, behaves as a tumor suppressor during glioma initiation. In this context, we showed SOX2 is transcriptionally downregulated to impair NSC multipotency, thus locking NSCs in an undifferentiated state to initiate gliomagenesis. This downregulation occurs secondary to dynamic reorganization of the topologically associating domain (TAD) of SOX2 and the loss of contact with several genomic loci with histone modifications and chromatin accessibility suggestive of being enhancers. Here we show that those putative enhancers acquire enhancer-like features simultaneous to tje TAD organizing in a way that facilitates interaction with the SOX2 promoter during the process of pluripotent stem cell differentiation into neuroectodermal lineages, suggesting a developmental role. Preliminary data suggests that disruption of the SOX2 TAD by preventing binding of the genome organizer CTCF downregulates SOX2 expression in NSCs. Targeted silencing of several regions of a putative enhancer with CRISPRi also downregulates SOX2. In human embryonic stem cells (hESCs), interfering with these CTCF binding sites biases their differentiation away from the neuroectoderm. We are currently performing CRISPRi screen against all putative enhancer loci, teratoma formation assays on hESCs lacking relevant CTCF binding, and CRISPR mediated deletion of putative enhancers. Understanding this developmental process may reveal underlying vulnerabilities in LGA.