To exploit the capability of super-resolution deep learning reconstruction (SR-DLR) to save radiation exposure from coronary CT angiography (CCTA) and assess its impact on image quality, coronary plaque quantification and characterization, and stenosis severity analysis. This prospective study included 50 patients who underwent low-dose (LD) and subsequent ultra-low-dose (ULD) CCTA scans. LD CCTA images were reconstructed with hybrid iterative reconstruction (HIR) and ULD CCTA images were reconstructed with HIR and SR-DLR. The objective parameters and subjective scores were compared. Coronary plaques were classified into three components: necrotic, fibrous or calcified content, with absolute volumes (mm3) recorded, and further characterized by percentage of calcified content. The four main coronary arteries were evaluated for the presence of stenosis. Moreover, 48 coronary segments in 9 patients were evaluated for the presence of significant stenosis, with invasive coronary angiography as a reference. Effective dose decreased by 60% from LD to ULD CCTA scans (2.01 ± 0.84 mSv vs. 0.80 ± 0.34 mSv, p < 0.001). ULD SR-DLR was non-inferior or even superior to LD HIR in terms of image quality and showed excellent agreements with LD HIR on the plaque volumes, characterization, and stenosis analysis (ICCs > 0.8). Moreover, there was no evidence of a difference in detecting significant coronary stenosis between the LD HIR and ULD SR-DLR (AUC: 0.90 vs. 0.89; p = 1.0). SR-DLR led to significant radiation dose savings from CCTA while ensuring high image quality and excellent performance in coronary plaque and stenosis analysis. Question How can radiation dose for coronary CT angiography be reduced without compromising image quality or affecting clinical decisions? Finding Super-resolution deep learning reconstruction (SR-DLR) algorithm allows for 60% dose reduction while ensuring high image quality and excellent performance in coronary plaque and stenosis analysis. Clinical relevance Dose optimization via SR-DLR has no detrimental effect on image quality, coronary plaque quantification and characterization, and stenosis severity analysis, which paves the way for its implementation in clinical practice.
Read full abstract